Index: stable/12/sys/dev/sfxge/sfxge_tx.c =================================================================== --- stable/12/sys/dev/sfxge/sfxge_tx.c (revision 342342) +++ stable/12/sys/dev/sfxge/sfxge_tx.c (revision 342343) @@ -1,2027 +1,2031 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010-2016 Solarflare Communications Inc. * All rights reserved. * * This software was developed in part by Philip Paeps under contract for * Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ /* Theory of operation: * * Tx queues allocation and mapping * * One Tx queue with enabled checksum offload is allocated per Rx channel * (event queue). Also 2 Tx queues (one without checksum offload and one * with IP checksum offload only) are allocated and bound to event queue 0. * sfxge_txq_type is used as Tx queue label. * * So, event queue plus label mapping to Tx queue index is: * if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES) * else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1 * See sfxge_get_txq_by_label() sfxge_ev.c */ #include __FBSDID("$FreeBSD$"); #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RSS #include #endif #include "common/efx.h" #include "sfxge.h" #include "sfxge_tx.h" #define SFXGE_PARAM_TX_DPL_GET_MAX SFXGE_PARAM(tx_dpl_get_max) static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT; TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max); SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN, &sfxge_tx_dpl_get_max, 0, "Maximum number of any packets in deferred packet get-list"); #define SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \ SFXGE_PARAM(tx_dpl_get_non_tcp_max) static int sfxge_tx_dpl_get_non_tcp_max = SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT; TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max); SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN, &sfxge_tx_dpl_get_non_tcp_max, 0, "Maximum number of non-TCP packets in deferred packet get-list"); #define SFXGE_PARAM_TX_DPL_PUT_MAX SFXGE_PARAM(tx_dpl_put_max) static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT; TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max); SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN, &sfxge_tx_dpl_put_max, 0, "Maximum number of any packets in deferred packet put-list"); #define SFXGE_PARAM_TSO_FW_ASSISTED SFXGE_PARAM(tso_fw_assisted) static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2); TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted); SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN, &sfxge_tso_fw_assisted, 0, "Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware"); static const struct { const char *name; size_t offset; } sfxge_tx_stats[] = { #define SFXGE_TX_STAT(name, member) \ { #name, offsetof(struct sfxge_txq, member) } SFXGE_TX_STAT(tso_bursts, tso_bursts), SFXGE_TX_STAT(tso_packets, tso_packets), SFXGE_TX_STAT(tso_long_headers, tso_long_headers), SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many), SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc), SFXGE_TX_STAT(tx_collapses, collapses), SFXGE_TX_STAT(tx_drops, drops), SFXGE_TX_STAT(tx_get_overflow, get_overflow), SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow), SFXGE_TX_STAT(tx_put_overflow, put_overflow), SFXGE_TX_STAT(tx_netdown_drops, netdown_drops), }; /* Forward declarations. */ static void sfxge_tx_qdpl_service(struct sfxge_txq *txq); static void sfxge_tx_qlist_post(struct sfxge_txq *txq); static void sfxge_tx_qunblock(struct sfxge_txq *txq); static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, const bus_dma_segment_t *dma_seg, int n_dma_seg, int vlan_tagged); static int sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf) { uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ? mbuf->m_pkthdr.ether_vtag : 0); if (this_tag == txq->hw_vlan_tci) return (0); efx_tx_qdesc_vlantci_create(txq->common, bswap16(this_tag), &txq->pend_desc[0]); txq->n_pend_desc = 1; txq->hw_vlan_tci = this_tag; return (1); } static inline void sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp) { KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0")); if (__predict_false(*pstmp == &txq->stmp[txq->ptr_mask])) *pstmp = &txq->stmp[0]; else (*pstmp)++; } void sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq) { unsigned int completed; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); completed = txq->completed; while (completed != txq->pending) { struct sfxge_tx_mapping *stmp; unsigned int id; id = completed++ & txq->ptr_mask; stmp = &txq->stmp[id]; if (stmp->flags & TX_BUF_UNMAP) { bus_dmamap_unload(txq->packet_dma_tag, stmp->map); if (stmp->flags & TX_BUF_MBUF) { struct mbuf *m = stmp->u.mbuf; do m = m_free(m); while (m != NULL); } else { free(stmp->u.heap_buf, M_SFXGE); } stmp->flags = 0; } } txq->completed = completed; /* Check whether we need to unblock the queue. */ mb(); if (txq->blocked) { unsigned int level; level = txq->added - txq->completed; if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) sfxge_tx_qunblock(txq); } } static unsigned int sfxge_is_mbuf_non_tcp(struct mbuf *mbuf) { /* Absence of TCP checksum flags does not mean that it is non-TCP * but it should be true if user wants to achieve high throughput. */ return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP))); } /* * Reorder the put list and append it to the get list. */ static void sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq) { struct sfxge_tx_dpl *stdp; struct mbuf *mbuf, *get_next, **get_tailp; volatile uintptr_t *putp; uintptr_t put; unsigned int count; unsigned int non_tcp_count; SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); stdp = &txq->dpl; /* Acquire the put list. */ putp = &stdp->std_put; put = atomic_readandclear_ptr(putp); mbuf = (void *)put; if (mbuf == NULL) return; /* Reverse the put list. */ get_tailp = &mbuf->m_nextpkt; get_next = NULL; count = 0; non_tcp_count = 0; do { struct mbuf *put_next; non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf); put_next = mbuf->m_nextpkt; mbuf->m_nextpkt = get_next; get_next = mbuf; mbuf = put_next; count++; } while (mbuf != NULL); if (count > stdp->std_put_hiwat) stdp->std_put_hiwat = count; /* Append the reversed put list to the get list. */ KASSERT(*get_tailp == NULL, ("*get_tailp != NULL")); *stdp->std_getp = get_next; stdp->std_getp = get_tailp; stdp->std_get_count += count; stdp->std_get_non_tcp_count += non_tcp_count; } static void sfxge_tx_qreap(struct sfxge_txq *txq) { SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); txq->reaped = txq->completed; } static void sfxge_tx_qlist_post(struct sfxge_txq *txq) { unsigned int old_added; unsigned int block_level; unsigned int level; int rc; SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0")); KASSERT(txq->n_pend_desc <= txq->max_pkt_desc, ("txq->n_pend_desc too large")); KASSERT(!txq->blocked, ("txq->blocked")); old_added = txq->added; /* Post the fragment list. */ rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc, txq->reaped, &txq->added); KASSERT(rc == 0, ("efx_tx_qdesc_post() failed")); /* If efx_tx_qdesc_post() had to refragment, our information about * buffers to free may be associated with the wrong * descriptors. */ KASSERT(txq->added - old_added == txq->n_pend_desc, ("efx_tx_qdesc_post() refragmented descriptors")); level = txq->added - txq->reaped; KASSERT(level <= txq->entries, ("overfilled TX queue")); /* Clear the fragment list. */ txq->n_pend_desc = 0; /* * Set the block level to ensure there is space to generate a * large number of descriptors for TSO. */ block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc; /* Have we reached the block level? */ if (level < block_level) return; /* Reap, and check again */ sfxge_tx_qreap(txq); level = txq->added - txq->reaped; if (level < block_level) return; txq->blocked = 1; /* * Avoid a race with completion interrupt handling that could leave * the queue blocked. */ mb(); sfxge_tx_qreap(txq); level = txq->added - txq->reaped; if (level < block_level) { mb(); txq->blocked = 0; } } static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf) { bus_dmamap_t *used_map; bus_dmamap_t map; bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG]; unsigned int id; struct sfxge_tx_mapping *stmp; efx_desc_t *desc; int n_dma_seg; int rc; int i; int eop; + uint16_t hw_vlan_tci_prev; int vlan_tagged; KASSERT(!txq->blocked, ("txq->blocked")); #if SFXGE_TX_PARSE_EARLY /* * If software TSO is used, we still need to copy packet header, * even if we have already parsed it early before enqueue. */ if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) && (txq->tso_fw_assisted == 0)) prefetch_read_many(mbuf->m_data); #else /* * Prefetch packet header since we need to parse it and extract * IP ID, TCP sequence number and flags. */ if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) prefetch_read_many(mbuf->m_data); #endif if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) { rc = EINTR; goto reject; } /* Load the packet for DMA. */ id = txq->added & txq->ptr_mask; stmp = &txq->stmp[id]; rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map, mbuf, dma_seg, &n_dma_seg, 0); if (rc == EFBIG) { /* Try again. */ struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT, SFXGE_TX_MAPPING_MAX_SEG); if (new_mbuf == NULL) goto reject; ++txq->collapses; mbuf = new_mbuf; rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map, mbuf, dma_seg, &n_dma_seg, 0); } if (rc != 0) goto reject; /* Make the packet visible to the hardware. */ bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE); used_map = &stmp->map; + hw_vlan_tci_prev = txq->hw_vlan_tci; + vlan_tagged = sfxge_tx_maybe_insert_tag(txq, mbuf); if (vlan_tagged) { sfxge_next_stmp(txq, &stmp); } if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) { rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg, vlan_tagged); if (rc < 0) goto reject_mapped; stmp = &txq->stmp[(rc - 1) & txq->ptr_mask]; } else { /* Add the mapping to the fragment list, and set flags * for the buffer. */ i = 0; for (;;) { desc = &txq->pend_desc[i + vlan_tagged]; eop = (i == n_dma_seg - 1); efx_tx_qdesc_dma_create(txq->common, dma_seg[i].ds_addr, dma_seg[i].ds_len, eop, desc); if (eop) break; i++; sfxge_next_stmp(txq, &stmp); } txq->n_pend_desc = n_dma_seg + vlan_tagged; } /* * If the mapping required more than one descriptor * then we need to associate the DMA map with the last * descriptor, not the first. */ if (used_map != &stmp->map) { map = stmp->map; stmp->map = *used_map; *used_map = map; } stmp->u.mbuf = mbuf; stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF; /* Post the fragment list. */ sfxge_tx_qlist_post(txq); return (0); reject_mapped: + txq->hw_vlan_tci = hw_vlan_tci_prev; bus_dmamap_unload(txq->packet_dma_tag, *used_map); reject: /* Drop the packet on the floor. */ m_freem(mbuf); ++txq->drops; return (rc); } /* * Drain the deferred packet list into the transmit queue. */ static void sfxge_tx_qdpl_drain(struct sfxge_txq *txq) { struct sfxge_softc *sc; struct sfxge_tx_dpl *stdp; struct mbuf *mbuf, *next; unsigned int count; unsigned int non_tcp_count; unsigned int pushed; int rc; SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); sc = txq->sc; stdp = &txq->dpl; pushed = txq->added; if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) { prefetch_read_many(sc->enp); prefetch_read_many(txq->common); } mbuf = stdp->std_get; count = stdp->std_get_count; non_tcp_count = stdp->std_get_non_tcp_count; if (count > stdp->std_get_hiwat) stdp->std_get_hiwat = count; while (count != 0) { KASSERT(mbuf != NULL, ("mbuf == NULL")); next = mbuf->m_nextpkt; mbuf->m_nextpkt = NULL; ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */ if (next != NULL) prefetch_read_many(next); rc = sfxge_tx_queue_mbuf(txq, mbuf); --count; non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf); mbuf = next; if (rc != 0) continue; if (txq->blocked) break; /* Push the fragments to the hardware in batches. */ if (txq->added - pushed >= SFXGE_TX_BATCH) { efx_tx_qpush(txq->common, txq->added, pushed); pushed = txq->added; } } if (count == 0) { KASSERT(mbuf == NULL, ("mbuf != NULL")); KASSERT(non_tcp_count == 0, ("inconsistent TCP/non-TCP detection")); stdp->std_get = NULL; stdp->std_get_count = 0; stdp->std_get_non_tcp_count = 0; stdp->std_getp = &stdp->std_get; } else { stdp->std_get = mbuf; stdp->std_get_count = count; stdp->std_get_non_tcp_count = non_tcp_count; } if (txq->added != pushed) efx_tx_qpush(txq->common, txq->added, pushed); KASSERT(txq->blocked || stdp->std_get_count == 0, ("queue unblocked but count is non-zero")); } #define SFXGE_TX_QDPL_PENDING(_txq) ((_txq)->dpl.std_put != 0) /* * Service the deferred packet list. * * NOTE: drops the txq mutex! */ static void sfxge_tx_qdpl_service(struct sfxge_txq *txq) { SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); do { if (SFXGE_TX_QDPL_PENDING(txq)) sfxge_tx_qdpl_swizzle(txq); if (!txq->blocked) sfxge_tx_qdpl_drain(txq); SFXGE_TXQ_UNLOCK(txq); } while (SFXGE_TX_QDPL_PENDING(txq) && SFXGE_TXQ_TRYLOCK(txq)); } /* * Put a packet on the deferred packet get-list. */ static int sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf) { struct sfxge_tx_dpl *stdp; stdp = &txq->dpl; KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); if (stdp->std_get_count >= stdp->std_get_max) { txq->get_overflow++; return (ENOBUFS); } if (sfxge_is_mbuf_non_tcp(mbuf)) { if (stdp->std_get_non_tcp_count >= stdp->std_get_non_tcp_max) { txq->get_non_tcp_overflow++; return (ENOBUFS); } stdp->std_get_non_tcp_count++; } *(stdp->std_getp) = mbuf; stdp->std_getp = &mbuf->m_nextpkt; stdp->std_get_count++; return (0); } /* * Put a packet on the deferred packet put-list. * * We overload the csum_data field in the mbuf to keep track of this length * because there is no cheap alternative to avoid races. */ static int sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf) { struct sfxge_tx_dpl *stdp; volatile uintptr_t *putp; uintptr_t old; uintptr_t new; unsigned int put_count; KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); stdp = &txq->dpl; putp = &stdp->std_put; new = (uintptr_t)mbuf; do { old = *putp; if (old != 0) { struct mbuf *mp = (struct mbuf *)old; put_count = mp->m_pkthdr.csum_data; } else put_count = 0; if (put_count >= stdp->std_put_max) { atomic_add_long(&txq->put_overflow, 1); return (ENOBUFS); } mbuf->m_pkthdr.csum_data = put_count + 1; mbuf->m_nextpkt = (void *)old; } while (atomic_cmpset_ptr(putp, old, new) == 0); return (0); } /* * Called from if_transmit - will try to grab the txq lock and enqueue to the * put list if it succeeds, otherwise try to push onto the defer list if space. */ static int sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m) { int rc; if (!SFXGE_LINK_UP(txq->sc)) { atomic_add_long(&txq->netdown_drops, 1); return (ENETDOWN); } /* * Try to grab the txq lock. If we are able to get the lock, * the packet will be appended to the "get list" of the deferred * packet list. Otherwise, it will be pushed on the "put list". */ if (SFXGE_TXQ_TRYLOCK(txq)) { /* First swizzle put-list to get-list to keep order */ sfxge_tx_qdpl_swizzle(txq); rc = sfxge_tx_qdpl_put_locked(txq, m); /* Try to service the list. */ sfxge_tx_qdpl_service(txq); /* Lock has been dropped. */ } else { rc = sfxge_tx_qdpl_put_unlocked(txq, m); /* * Try to grab the lock again. * * If we are able to get the lock, we need to process * the deferred packet list. If we are not able to get * the lock, another thread is processing the list. */ if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) { sfxge_tx_qdpl_service(txq); /* Lock has been dropped. */ } } SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); return (rc); } static void sfxge_tx_qdpl_flush(struct sfxge_txq *txq) { struct sfxge_tx_dpl *stdp = &txq->dpl; struct mbuf *mbuf, *next; SFXGE_TXQ_LOCK(txq); sfxge_tx_qdpl_swizzle(txq); for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) { next = mbuf->m_nextpkt; m_freem(mbuf); } stdp->std_get = NULL; stdp->std_get_count = 0; stdp->std_get_non_tcp_count = 0; stdp->std_getp = &stdp->std_get; SFXGE_TXQ_UNLOCK(txq); } void sfxge_if_qflush(struct ifnet *ifp) { struct sfxge_softc *sc; unsigned int i; sc = ifp->if_softc; for (i = 0; i < sc->txq_count; i++) sfxge_tx_qdpl_flush(sc->txq[i]); } #if SFXGE_TX_PARSE_EARLY /* There is little space for user data in mbuf pkthdr, so we * use l*hlen fields which are not used by the driver otherwise * to store header offsets. * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes. */ #define TSO_MBUF_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[0]) /* We abuse l5hlen here because PH_loc can hold only 64 bits of data */ #define TSO_MBUF_FLAGS(_mbuf) ((_mbuf)->m_pkthdr.l5hlen) #define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1]) #define TSO_MBUF_SEQNUM(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1]) static void sfxge_parse_tx_packet(struct mbuf *mbuf) { struct ether_header *eh = mtod(mbuf, struct ether_header *); const struct tcphdr *th; struct tcphdr th_copy; /* Find network protocol and header */ TSO_MBUF_PROTO(mbuf) = eh->ether_type; if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) { struct ether_vlan_header *veh = mtod(mbuf, struct ether_vlan_header *); TSO_MBUF_PROTO(mbuf) = veh->evl_proto; mbuf->m_pkthdr.l2hlen = sizeof(*veh); } else { mbuf->m_pkthdr.l2hlen = sizeof(*eh); } /* Find TCP header */ if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) { const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen); KASSERT(iph->ip_p == IPPROTO_TCP, ("TSO required on non-TCP packet")); mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl; TSO_MBUF_PACKETID(mbuf) = iph->ip_id; } else { KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6), ("TSO required on non-IP packet")); KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt == IPPROTO_TCP, ("TSO required on non-TCP packet")); mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr); TSO_MBUF_PACKETID(mbuf) = 0; } KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen, ("network header is fragmented in mbuf")); /* We need TCP header including flags (window is the next) */ if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) { m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy), (caddr_t)&th_copy); th = &th_copy; } else { th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen); } mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off; TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq); /* These flags must not be duplicated */ /* * RST should not be duplicated as well, but FreeBSD kernel * generates TSO packets with RST flag. So, do not assert * its absence. */ KASSERT(!(th->th_flags & (TH_URG | TH_SYN)), ("incompatible TCP flag 0x%x on TSO packet", th->th_flags & (TH_URG | TH_SYN))); TSO_MBUF_FLAGS(mbuf) = th->th_flags; } #endif /* * TX start -- called by the stack. */ int sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m) { struct sfxge_softc *sc; struct sfxge_txq *txq; int rc; sc = (struct sfxge_softc *)ifp->if_softc; /* * Transmit may be called when interface is up from the kernel * point of view, but not yet up (in progress) from the driver * point of view. I.e. link aggregation bring up. * Transmit may be called when interface is up from the driver * point of view, but already down from the kernel point of * view. I.e. Rx when interface shutdown is in progress. */ KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP), ("interface not up")); /* Pick the desired transmit queue. */ if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO)) { int index = 0; #ifdef RSS uint32_t bucket_id; /* * Select a TX queue which matches the corresponding * RX queue for the hash in order to assign both * TX and RX parts of the flow to the same CPU */ if (rss_m2bucket(m, &bucket_id) == 0) index = bucket_id % (sc->txq_count - (SFXGE_TXQ_NTYPES - 1)); #else /* check if flowid is set */ if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { uint32_t hash = m->m_pkthdr.flowid; uint32_t idx = hash % nitems(sc->rx_indir_table); index = sc->rx_indir_table[idx]; } #endif #if SFXGE_TX_PARSE_EARLY if (m->m_pkthdr.csum_flags & CSUM_TSO) sfxge_parse_tx_packet(m); #endif txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index]; } else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) { txq = sc->txq[SFXGE_TXQ_IP_CKSUM]; } else { txq = sc->txq[SFXGE_TXQ_NON_CKSUM]; } rc = sfxge_tx_packet_add(txq, m); if (rc != 0) m_freem(m); return (rc); } /* * Software "TSO". Not quite as good as doing it in hardware, but * still faster than segmenting in the stack. */ struct sfxge_tso_state { /* Output position */ unsigned out_len; /* Remaining length in current segment */ unsigned seqnum; /* Current sequence number */ unsigned packet_space; /* Remaining space in current packet */ unsigned segs_space; /* Remaining number of DMA segments for the packet (FATSOv2 only) */ /* Input position */ uint64_t dma_addr; /* DMA address of current position */ unsigned in_len; /* Remaining length in current mbuf */ const struct mbuf *mbuf; /* Input mbuf (head of chain) */ u_short protocol; /* Network protocol (after VLAN decap) */ ssize_t nh_off; /* Offset of network header */ ssize_t tcph_off; /* Offset of TCP header */ unsigned header_len; /* Number of bytes of header */ unsigned seg_size; /* TCP segment size */ int fw_assisted; /* Use FW-assisted TSO */ u_short packet_id; /* IPv4 packet ID from the original packet */ uint8_t tcp_flags; /* TCP flags */ efx_desc_t header_desc; /* Precomputed header descriptor for * FW-assisted TSO */ }; #if !SFXGE_TX_PARSE_EARLY static const struct ip *tso_iph(const struct sfxge_tso_state *tso) { KASSERT(tso->protocol == htons(ETHERTYPE_IP), ("tso_iph() in non-IPv4 state")); return (const struct ip *)(tso->mbuf->m_data + tso->nh_off); } static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso) { KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), ("tso_ip6h() in non-IPv6 state")); return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off); } static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso) { return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off); } #endif /* Size of preallocated TSO header buffers. Larger blocks must be * allocated from the heap. */ #define TSOH_STD_SIZE 128 /* At most half the descriptors in the queue at any time will refer to * a TSO header buffer, since they must always be followed by a * payload descriptor referring to an mbuf. */ #define TSOH_COUNT(_txq_entries) ((_txq_entries) / 2u) #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE) #define TSOH_PAGE_COUNT(_txq_entries) \ howmany(TSOH_COUNT(_txq_entries), TSOH_PER_PAGE) static int tso_init(struct sfxge_txq *txq) { struct sfxge_softc *sc = txq->sc; unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries); int i, rc; /* Allocate TSO header buffers */ txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]), M_SFXGE, M_WAITOK); for (i = 0; i < tsoh_page_count; i++) { rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]); if (rc != 0) goto fail; } return (0); fail: while (i-- > 0) sfxge_dma_free(&txq->tsoh_buffer[i]); free(txq->tsoh_buffer, M_SFXGE); txq->tsoh_buffer = NULL; return (rc); } static void tso_fini(struct sfxge_txq *txq) { int i; if (txq->tsoh_buffer != NULL) { for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++) sfxge_dma_free(&txq->tsoh_buffer[i]); free(txq->tsoh_buffer, M_SFXGE); } } static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso, const bus_dma_segment_t *hdr_dma_seg, struct mbuf *mbuf) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp); #if !SFXGE_TX_PARSE_EARLY struct ether_header *eh = mtod(mbuf, struct ether_header *); const struct tcphdr *th; struct tcphdr th_copy; #endif tso->fw_assisted = txq->tso_fw_assisted; tso->mbuf = mbuf; /* Find network protocol and header */ #if !SFXGE_TX_PARSE_EARLY tso->protocol = eh->ether_type; if (tso->protocol == htons(ETHERTYPE_VLAN)) { struct ether_vlan_header *veh = mtod(mbuf, struct ether_vlan_header *); tso->protocol = veh->evl_proto; tso->nh_off = sizeof(*veh); } else { tso->nh_off = sizeof(*eh); } #else tso->protocol = TSO_MBUF_PROTO(mbuf); tso->nh_off = mbuf->m_pkthdr.l2hlen; tso->tcph_off = mbuf->m_pkthdr.l3hlen; tso->packet_id = ntohs(TSO_MBUF_PACKETID(mbuf)); #endif #if !SFXGE_TX_PARSE_EARLY /* Find TCP header */ if (tso->protocol == htons(ETHERTYPE_IP)) { KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP, ("TSO required on non-TCP packet")); tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl; tso->packet_id = ntohs(tso_iph(tso)->ip_id); } else { KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), ("TSO required on non-IP packet")); KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP, ("TSO required on non-TCP packet")); tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr); tso->packet_id = 0; } #endif if (tso->fw_assisted && __predict_false(tso->tcph_off > encp->enc_tx_tso_tcp_header_offset_limit)) { tso->fw_assisted = 0; } #if !SFXGE_TX_PARSE_EARLY KASSERT(mbuf->m_len >= tso->tcph_off, ("network header is fragmented in mbuf")); /* We need TCP header including flags (window is the next) */ if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) { m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy), (caddr_t)&th_copy); th = &th_copy; } else { th = tso_tcph(tso); } tso->header_len = tso->tcph_off + 4 * th->th_off; #else tso->header_len = mbuf->m_pkthdr.l4hlen; #endif tso->seg_size = mbuf->m_pkthdr.tso_segsz; #if !SFXGE_TX_PARSE_EARLY tso->seqnum = ntohl(th->th_seq); /* These flags must not be duplicated */ /* * RST should not be duplicated as well, but FreeBSD kernel * generates TSO packets with RST flag. So, do not assert * its absence. */ KASSERT(!(th->th_flags & (TH_URG | TH_SYN)), ("incompatible TCP flag 0x%x on TSO packet", th->th_flags & (TH_URG | TH_SYN))); tso->tcp_flags = th->th_flags; #else tso->seqnum = TSO_MBUF_SEQNUM(mbuf); tso->tcp_flags = TSO_MBUF_FLAGS(mbuf); #endif tso->out_len = mbuf->m_pkthdr.len - tso->header_len; if (tso->fw_assisted) { if (hdr_dma_seg->ds_len >= tso->header_len) efx_tx_qdesc_dma_create(txq->common, hdr_dma_seg->ds_addr, tso->header_len, B_FALSE, &tso->header_desc); else tso->fw_assisted = 0; } } /* * tso_fill_packet_with_fragment - form descriptors for the current fragment * * Form descriptors for the current fragment, until we reach the end * of fragment or end-of-packet. Return 0 on success, 1 if not enough * space. */ static void tso_fill_packet_with_fragment(struct sfxge_txq *txq, struct sfxge_tso_state *tso) { efx_desc_t *desc; int n; uint64_t dma_addr = tso->dma_addr; boolean_t eop; if (tso->in_len == 0 || tso->packet_space == 0) return; KASSERT(tso->in_len > 0, ("TSO input length went negative")); KASSERT(tso->packet_space > 0, ("TSO packet space went negative")); if (tso->fw_assisted & SFXGE_FATSOV2) { n = tso->in_len; tso->out_len -= n; tso->seqnum += n; tso->in_len = 0; if (n < tso->packet_space) { tso->packet_space -= n; tso->segs_space--; } else { tso->packet_space = tso->seg_size - (n - tso->packet_space) % tso->seg_size; tso->segs_space = EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 - (tso->packet_space != tso->seg_size); } } else { n = min(tso->in_len, tso->packet_space); tso->packet_space -= n; tso->out_len -= n; tso->dma_addr += n; tso->in_len -= n; } /* * It is OK to use binary OR below to avoid extra branching * since all conditions may always be checked. */ eop = (tso->out_len == 0) | (tso->packet_space == 0) | (tso->segs_space == 0); desc = &txq->pend_desc[txq->n_pend_desc++]; efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc); } /* Callback from bus_dmamap_load() for long TSO headers. */ static void tso_map_long_header(void *dma_addr_ret, bus_dma_segment_t *segs, int nseg, int error) { *(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) && __predict_true(nseg == 1)) ? segs->ds_addr : 0); } /* * tso_start_new_packet - generate a new header and prepare for the new packet * * Generate a new header and prepare for the new packet. Return 0 on * success, or an error code if failed to alloc header. */ static int tso_start_new_packet(struct sfxge_txq *txq, struct sfxge_tso_state *tso, unsigned int *idp) { unsigned int id = *idp; struct tcphdr *tsoh_th; unsigned ip_length; caddr_t header; uint64_t dma_addr; bus_dmamap_t map; efx_desc_t *desc; int rc; if (tso->fw_assisted) { if (tso->fw_assisted & SFXGE_FATSOV2) { /* Add 2 FATSOv2 option descriptors */ desc = &txq->pend_desc[txq->n_pend_desc]; efx_tx_qdesc_tso2_create(txq->common, tso->packet_id, tso->seqnum, tso->seg_size, desc, EFX_TX_FATSOV2_OPT_NDESCS); desc += EFX_TX_FATSOV2_OPT_NDESCS; txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS; KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask; tso->segs_space = EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1; } else { uint8_t tcp_flags = tso->tcp_flags; if (tso->out_len > tso->seg_size) tcp_flags &= ~(TH_FIN | TH_PUSH); /* Add FATSOv1 option descriptor */ desc = &txq->pend_desc[txq->n_pend_desc++]; efx_tx_qdesc_tso_create(txq->common, tso->packet_id, tso->seqnum, tcp_flags, desc++); KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); id = (id + 1) & txq->ptr_mask; tso->seqnum += tso->seg_size; tso->segs_space = UINT_MAX; } /* Header DMA descriptor */ *desc = tso->header_desc; txq->n_pend_desc++; KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); id = (id + 1) & txq->ptr_mask; } else { /* Allocate a DMA-mapped header buffer. */ if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) { unsigned int page_index = (id / 2) / TSOH_PER_PAGE; unsigned int buf_index = (id / 2) % TSOH_PER_PAGE; header = (txq->tsoh_buffer[page_index].esm_base + buf_index * TSOH_STD_SIZE); dma_addr = (txq->tsoh_buffer[page_index].esm_addr + buf_index * TSOH_STD_SIZE); map = txq->tsoh_buffer[page_index].esm_map; KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); } else { struct sfxge_tx_mapping *stmp = &txq->stmp[id]; /* We cannot use bus_dmamem_alloc() as that may sleep */ header = malloc(tso->header_len, M_SFXGE, M_NOWAIT); if (__predict_false(!header)) return (ENOMEM); rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map, header, tso->header_len, tso_map_long_header, &dma_addr, BUS_DMA_NOWAIT); if (__predict_false(dma_addr == 0)) { if (rc == 0) { /* Succeeded but got >1 segment */ bus_dmamap_unload(txq->packet_dma_tag, stmp->map); rc = EINVAL; } free(header, M_SFXGE); return (rc); } map = stmp->map; txq->tso_long_headers++; stmp->u.heap_buf = header; stmp->flags = TX_BUF_UNMAP; } tsoh_th = (struct tcphdr *)(header + tso->tcph_off); /* Copy and update the headers. */ m_copydata(tso->mbuf, 0, tso->header_len, header); tsoh_th->th_seq = htonl(tso->seqnum); tso->seqnum += tso->seg_size; if (tso->out_len > tso->seg_size) { /* This packet will not finish the TSO burst. */ ip_length = tso->header_len - tso->nh_off + tso->seg_size; tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH); } else { /* This packet will be the last in the TSO burst. */ ip_length = tso->header_len - tso->nh_off + tso->out_len; } if (tso->protocol == htons(ETHERTYPE_IP)) { struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off); tsoh_iph->ip_len = htons(ip_length); /* XXX We should increment ip_id, but FreeBSD doesn't * currently allocate extra IDs for multiple segments. */ } else { struct ip6_hdr *tsoh_iph = (struct ip6_hdr *)(header + tso->nh_off); tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph)); } /* Make the header visible to the hardware. */ bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE); /* Form a descriptor for this header. */ desc = &txq->pend_desc[txq->n_pend_desc++]; efx_tx_qdesc_dma_create(txq->common, dma_addr, tso->header_len, 0, desc); id = (id + 1) & txq->ptr_mask; tso->segs_space = UINT_MAX; } tso->packet_space = tso->seg_size; txq->tso_packets++; *idp = id; return (0); } static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, const bus_dma_segment_t *dma_seg, int n_dma_seg, int vlan_tagged) { struct sfxge_tso_state tso; unsigned int id; unsigned skipped = 0; tso_start(txq, &tso, dma_seg, mbuf); while (dma_seg->ds_len + skipped <= tso.header_len) { skipped += dma_seg->ds_len; --n_dma_seg; KASSERT(n_dma_seg, ("no payload found in TSO packet")); ++dma_seg; } tso.in_len = dma_seg->ds_len - (tso.header_len - skipped); tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped); id = (txq->added + vlan_tagged) & txq->ptr_mask; if (__predict_false(tso_start_new_packet(txq, &tso, &id))) return (-1); while (1) { tso_fill_packet_with_fragment(txq, &tso); /* Exactly one DMA descriptor is added */ KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); id = (id + 1) & txq->ptr_mask; /* Move onto the next fragment? */ if (tso.in_len == 0) { --n_dma_seg; if (n_dma_seg == 0) break; ++dma_seg; tso.in_len = dma_seg->ds_len; tso.dma_addr = dma_seg->ds_addr; } /* End of packet? */ if ((tso.packet_space == 0) | (tso.segs_space == 0)) { unsigned int n_fatso_opt_desc = (tso.fw_assisted & SFXGE_FATSOV2) ? EFX_TX_FATSOV2_OPT_NDESCS : (tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0; /* If the queue is now full due to tiny MSS, * or we can't create another header, discard * the remainder of the input mbuf but do not * roll back the work we have done. */ if (txq->n_pend_desc + n_fatso_opt_desc + 1 /* header */ + n_dma_seg > txq->max_pkt_desc) { txq->tso_pdrop_too_many++; break; } if (__predict_false(tso_start_new_packet(txq, &tso, &id))) { txq->tso_pdrop_no_rsrc++; break; } } } txq->tso_bursts++; return (id); } static void sfxge_tx_qunblock(struct sfxge_txq *txq) { struct sfxge_softc *sc; struct sfxge_evq *evq; sc = txq->sc; evq = sc->evq[txq->evq_index]; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) return; SFXGE_TXQ_LOCK(txq); if (txq->blocked) { unsigned int level; level = txq->added - txq->completed; if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) { /* reaped must be in sync with blocked */ sfxge_tx_qreap(txq); txq->blocked = 0; } } sfxge_tx_qdpl_service(txq); /* note: lock has been dropped */ } void sfxge_tx_qflush_done(struct sfxge_txq *txq) { txq->flush_state = SFXGE_FLUSH_DONE; } static void sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index) { struct sfxge_txq *txq; struct sfxge_evq *evq; unsigned int count; SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); txq = sc->txq[index]; evq = sc->evq[txq->evq_index]; SFXGE_EVQ_LOCK(evq); SFXGE_TXQ_LOCK(txq); KASSERT(txq->init_state == SFXGE_TXQ_STARTED, ("txq->init_state != SFXGE_TXQ_STARTED")); txq->init_state = SFXGE_TXQ_INITIALIZED; if (txq->flush_state != SFXGE_FLUSH_DONE) { txq->flush_state = SFXGE_FLUSH_PENDING; SFXGE_EVQ_UNLOCK(evq); SFXGE_TXQ_UNLOCK(txq); /* Flush the transmit queue. */ if (efx_tx_qflush(txq->common) != 0) { log(LOG_ERR, "%s: Flushing Tx queue %u failed\n", device_get_nameunit(sc->dev), index); txq->flush_state = SFXGE_FLUSH_DONE; } else { count = 0; do { /* Spin for 100ms. */ DELAY(100000); if (txq->flush_state != SFXGE_FLUSH_PENDING) break; } while (++count < 20); } SFXGE_EVQ_LOCK(evq); SFXGE_TXQ_LOCK(txq); KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED, ("txq->flush_state == SFXGE_FLUSH_FAILED")); if (txq->flush_state != SFXGE_FLUSH_DONE) { /* Flush timeout */ log(LOG_ERR, "%s: Cannot flush Tx queue %u\n", device_get_nameunit(sc->dev), index); txq->flush_state = SFXGE_FLUSH_DONE; } } txq->blocked = 0; txq->pending = txq->added; sfxge_tx_qcomplete(txq, evq); KASSERT(txq->completed == txq->added, ("txq->completed != txq->added")); sfxge_tx_qreap(txq); KASSERT(txq->reaped == txq->completed, ("txq->reaped != txq->completed")); txq->added = 0; txq->pending = 0; txq->completed = 0; txq->reaped = 0; /* Destroy the common code transmit queue. */ efx_tx_qdestroy(txq->common); txq->common = NULL; efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, EFX_TXQ_NBUFS(sc->txq_entries)); SFXGE_EVQ_UNLOCK(evq); SFXGE_TXQ_UNLOCK(txq); } /* * Estimate maximum number of Tx descriptors required for TSO packet. * With minimum MSS and maximum mbuf length we might need more (even * than a ring-ful of descriptors), but this should not happen in * practice except due to deliberate attack. In that case we will * truncate the output at a packet boundary. */ static unsigned int sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type, unsigned int tso_fw_assisted) { /* One descriptor for every input fragment */ unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG; unsigned int sw_tso_max_descs; unsigned int fa_tso_v1_max_descs = 0; unsigned int fa_tso_v2_max_descs = 0; /* VLAN tagging Tx option descriptor may be required */ if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled) max_descs++; if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) { /* * Plus header and payload descriptor for each output segment. * Minus one since header fragment is already counted. * Even if FATSO is used, we should be ready to fallback * to do it in the driver. */ sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1; /* FW assisted TSOv1 requires one more descriptor per segment * in comparison to SW TSO */ if (tso_fw_assisted & SFXGE_FATSOV1) fa_tso_v1_max_descs = sw_tso_max_descs + SFXGE_TSO_MAX_SEGS; /* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra * descriptors per superframe limited by number of DMA fetches * per packet. The first packet header is already counted. */ if (tso_fw_assisted & SFXGE_FATSOV2) { fa_tso_v2_max_descs = howmany(SFXGE_TX_MAPPING_MAX_SEG, EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) * (EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1; } max_descs += MAX(sw_tso_max_descs, MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs)); } return (max_descs); } static int sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index) { struct sfxge_txq *txq; efsys_mem_t *esmp; uint16_t flags; unsigned int tso_fw_assisted; struct sfxge_evq *evq; unsigned int desc_index; int rc; SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); txq = sc->txq[index]; esmp = &txq->mem; evq = sc->evq[txq->evq_index]; KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, ("txq->init_state != SFXGE_TXQ_INITIALIZED")); KASSERT(evq->init_state == SFXGE_EVQ_STARTED, ("evq->init_state != SFXGE_EVQ_STARTED")); /* Program the buffer table. */ if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp, EFX_TXQ_NBUFS(sc->txq_entries))) != 0) return (rc); /* Determine the kind of queue we are creating. */ tso_fw_assisted = 0; switch (txq->type) { case SFXGE_TXQ_NON_CKSUM: flags = 0; break; case SFXGE_TXQ_IP_CKSUM: flags = EFX_TXQ_CKSUM_IPV4; break; case SFXGE_TXQ_IP_TCP_UDP_CKSUM: flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP; tso_fw_assisted = sc->tso_fw_assisted; if (tso_fw_assisted & SFXGE_FATSOV2) flags |= EFX_TXQ_FATSOV2; break; default: KASSERT(0, ("Impossible TX queue")); flags = 0; break; } /* Create the common code transmit queue. */ if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp, sc->txq_entries, txq->buf_base_id, flags, evq->common, &txq->common, &desc_index)) != 0) { /* Retry if no FATSOv2 resources, otherwise fail */ if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2)) goto fail; /* Looks like all FATSOv2 contexts are used */ flags &= ~EFX_TXQ_FATSOV2; tso_fw_assisted &= ~SFXGE_FATSOV2; if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp, sc->txq_entries, txq->buf_base_id, flags, evq->common, &txq->common, &desc_index)) != 0) goto fail; } /* Initialise queue descriptor indexes */ txq->added = txq->pending = txq->completed = txq->reaped = desc_index; SFXGE_TXQ_LOCK(txq); /* Enable the transmit queue. */ efx_tx_qenable(txq->common); txq->init_state = SFXGE_TXQ_STARTED; txq->flush_state = SFXGE_FLUSH_REQUIRED; txq->tso_fw_assisted = tso_fw_assisted; txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type, tso_fw_assisted); txq->hw_vlan_tci = 0; SFXGE_TXQ_UNLOCK(txq); return (0); fail: efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, EFX_TXQ_NBUFS(sc->txq_entries)); return (rc); } void sfxge_tx_stop(struct sfxge_softc *sc) { int index; index = sc->txq_count; while (--index >= 0) sfxge_tx_qstop(sc, index); /* Tear down the transmit module */ efx_tx_fini(sc->enp); } int sfxge_tx_start(struct sfxge_softc *sc) { int index; int rc; /* Initialize the common code transmit module. */ if ((rc = efx_tx_init(sc->enp)) != 0) return (rc); for (index = 0; index < sc->txq_count; index++) { if ((rc = sfxge_tx_qstart(sc, index)) != 0) goto fail; } return (0); fail: while (--index >= 0) sfxge_tx_qstop(sc, index); efx_tx_fini(sc->enp); return (rc); } static int sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev); struct sysctl_oid *stat_node; unsigned int id; stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, "stats", CTLFLAG_RD, NULL, "Tx queue statistics"); if (stat_node == NULL) return (ENOMEM); for (id = 0; id < nitems(sfxge_tx_stats); id++) { SYSCTL_ADD_ULONG( ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO, sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS, (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset), ""); } return (0); } /** * Destroy a transmit queue. */ static void sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index) { struct sfxge_txq *txq; unsigned int nmaps; txq = sc->txq[index]; KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, ("txq->init_state != SFXGE_TXQ_INITIALIZED")); if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) tso_fini(txq); /* Free the context arrays. */ free(txq->pend_desc, M_SFXGE); nmaps = sc->txq_entries; while (nmaps-- != 0) bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); free(txq->stmp, M_SFXGE); /* Release DMA memory mapping. */ sfxge_dma_free(&txq->mem); sc->txq[index] = NULL; SFXGE_TXQ_LOCK_DESTROY(txq); free(txq, M_SFXGE); } static int sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index, enum sfxge_txq_type type, unsigned int evq_index) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); char name[16]; struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); struct sysctl_oid *txq_node; struct sfxge_txq *txq; struct sfxge_evq *evq; struct sfxge_tx_dpl *stdp; struct sysctl_oid *dpl_node; efsys_mem_t *esmp; unsigned int nmaps; int rc; txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK); txq->sc = sc; txq->entries = sc->txq_entries; txq->ptr_mask = txq->entries - 1; sc->txq[txq_index] = txq; esmp = &txq->mem; evq = sc->evq[evq_index]; /* Allocate and zero DMA space for the descriptor ring. */ if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0) return (rc); /* Allocate buffer table entries. */ sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries), &txq->buf_base_id); /* Create a DMA tag for packet mappings. */ if (bus_dma_tag_create(sc->parent_dma_tag, 1, encp->enc_tx_dma_desc_boundary, MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL, NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, encp->enc_tx_dma_desc_size_max, 0, NULL, NULL, &txq->packet_dma_tag) != 0) { device_printf(sc->dev, "Couldn't allocate txq DMA tag\n"); rc = ENOMEM; goto fail; } /* Allocate pending descriptor array for batching writes. */ txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries, M_SFXGE, M_ZERO | M_WAITOK); /* Allocate and initialise mbuf DMA mapping array. */ txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries, M_SFXGE, M_ZERO | M_WAITOK); for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) { rc = bus_dmamap_create(txq->packet_dma_tag, 0, &txq->stmp[nmaps].map); if (rc != 0) goto fail2; } snprintf(name, sizeof(name), "%u", txq_index); txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node), OID_AUTO, name, CTLFLAG_RD, NULL, ""); if (txq_node == NULL) { rc = ENOMEM; goto fail_txq_node; } if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM && (rc = tso_init(txq)) != 0) goto fail3; /* Initialize the deferred packet list. */ stdp = &txq->dpl; stdp->std_put_max = sfxge_tx_dpl_put_max; stdp->std_get_max = sfxge_tx_dpl_get_max; stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max; stdp->std_getp = &stdp->std_get; SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index); dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, "dpl", CTLFLAG_RD, NULL, "Deferred packet list statistics"); if (dpl_node == NULL) { rc = ENOMEM; goto fail_dpl_node; } SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, "get_count", CTLFLAG_RD | CTLFLAG_STATS, &stdp->std_get_count, 0, ""); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, "get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS, &stdp->std_get_non_tcp_count, 0, ""); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, "get_hiwat", CTLFLAG_RD | CTLFLAG_STATS, &stdp->std_get_hiwat, 0, ""); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, "put_hiwat", CTLFLAG_RD | CTLFLAG_STATS, &stdp->std_put_hiwat, 0, ""); rc = sfxge_txq_stat_init(txq, txq_node); if (rc != 0) goto fail_txq_stat_init; txq->type = type; txq->evq_index = evq_index; txq->init_state = SFXGE_TXQ_INITIALIZED; return (0); fail_txq_stat_init: fail_dpl_node: fail3: fail_txq_node: free(txq->pend_desc, M_SFXGE); fail2: while (nmaps-- != 0) bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); free(txq->stmp, M_SFXGE); bus_dma_tag_destroy(txq->packet_dma_tag); fail: sfxge_dma_free(esmp); return (rc); } static int sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS) { struct sfxge_softc *sc = arg1; unsigned int id = arg2; unsigned long sum; unsigned int index; /* Sum across all TX queues */ sum = 0; for (index = 0; index < sc->txq_count; index++) sum += *(unsigned long *)((caddr_t)sc->txq[index] + sfxge_tx_stats[id].offset); return (SYSCTL_OUT(req, &sum, sizeof(sum))); } static void sfxge_tx_stat_init(struct sfxge_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); struct sysctl_oid_list *stat_list; unsigned int id; stat_list = SYSCTL_CHILDREN(sc->stats_node); for (id = 0; id < nitems(sfxge_tx_stats); id++) { SYSCTL_ADD_PROC( ctx, stat_list, OID_AUTO, sfxge_tx_stats[id].name, CTLTYPE_ULONG|CTLFLAG_RD, sc, id, sfxge_tx_stat_handler, "LU", ""); } } uint64_t sfxge_tx_get_drops(struct sfxge_softc *sc) { unsigned int index; uint64_t drops = 0; struct sfxge_txq *txq; /* Sum across all TX queues */ for (index = 0; index < sc->txq_count; index++) { txq = sc->txq[index]; /* * In theory, txq->put_overflow and txq->netdown_drops * should use atomic operation and other should be * obtained under txq lock, but it is just statistics. */ drops += txq->drops + txq->get_overflow + txq->get_non_tcp_overflow + txq->put_overflow + txq->netdown_drops + txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc; } return (drops); } void sfxge_tx_fini(struct sfxge_softc *sc) { int index; index = sc->txq_count; while (--index >= 0) sfxge_tx_qfini(sc, index); sc->txq_count = 0; } int sfxge_tx_init(struct sfxge_softc *sc) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); struct sfxge_intr *intr; int index; int rc; intr = &sc->intr; KASSERT(intr->state == SFXGE_INTR_INITIALIZED, ("intr->state != SFXGE_INTR_INITIALIZED")); if (sfxge_tx_dpl_get_max <= 0) { log(LOG_ERR, "%s=%d must be greater than 0", SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max); rc = EINVAL; goto fail_tx_dpl_get_max; } if (sfxge_tx_dpl_get_non_tcp_max <= 0) { log(LOG_ERR, "%s=%d must be greater than 0", SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, sfxge_tx_dpl_get_non_tcp_max); rc = EINVAL; goto fail_tx_dpl_get_non_tcp_max; } if (sfxge_tx_dpl_put_max < 0) { log(LOG_ERR, "%s=%d must be greater or equal to 0", SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max); rc = EINVAL; goto fail_tx_dpl_put_max; } sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc; sc->tso_fw_assisted = sfxge_tso_fw_assisted; if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) || (!encp->enc_fw_assisted_tso_enabled)) sc->tso_fw_assisted &= ~SFXGE_FATSOV1; if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) || (!encp->enc_fw_assisted_tso_v2_enabled)) sc->tso_fw_assisted &= ~SFXGE_FATSOV2; sc->txqs_node = SYSCTL_ADD_NODE( device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues"); if (sc->txqs_node == NULL) { rc = ENOMEM; goto fail_txq_node; } /* Initialize the transmit queues */ if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM, SFXGE_TXQ_NON_CKSUM, 0)) != 0) goto fail; if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM, SFXGE_TXQ_IP_CKSUM, 0)) != 0) goto fail2; for (index = 0; index < sc->txq_count - SFXGE_TXQ_NTYPES + 1; index++) { if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index, SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0) goto fail3; } sfxge_tx_stat_init(sc); return (0); fail3: while (--index >= 0) sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM); fail2: sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM); fail: fail_txq_node: sc->txq_count = 0; fail_tx_dpl_put_max: fail_tx_dpl_get_non_tcp_max: fail_tx_dpl_get_max: return (rc); } Index: stable/12 =================================================================== --- stable/12 (revision 342342) +++ stable/12 (revision 342343) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r341327